

Disclosures

FINANCIAL DISCLOSURE RELEVANT TO THIS PRESENTATION:

Grants/Research Support: None

Speaker bureau/Honoraria: None

Consulting fees: None

Objective

To develop an efficient approach to interpret the information contained in the CBC in assessing hematological and systemic diseases

Elements of the Complete Blood Count

Healthy 71 year old male

WBC

 $7.1 \times 10^9 / L (4.5 - 11)$

Hb

155 g/L (130-180)

Hct

.455 (.4 -.52)

MCH

30.6 pg (26-34)

RDW

12 (11.4-14.4)

Plt

310×10⁹/L (140-440)

MPV

11 fL (10-14)

 $5.1 \times 10^{12} / L (4.4 - 5.9)$ RBC

MCV

90 fL (80-98)

MCHC 340 g/L (320-365)

Elements of the Complete Blood Count

Healthy 71 year old male

WBC $7.1 \times 10^9 / L (4.5-11)$

Hb 155 g/L (130-180) RBC 5.1×10^{12} /L (4.4-5.9)

Hct .455 (.4 -.52) MCV 90 fL (80-98)

MCH 30.6 pg (26-34) MCHC 340 g/L (320-365)

RDW 12 (11.4-14.4)

Plts $310 \times 10^9 / L (140 - 440)$

Neut 57.7% 4.1×10⁹/L

Lymh 33.8% 2.4×10⁹/L

Mono 5.6% 0.4×10⁹/L

Eos 1.4% $0.1\times10^9/L$

Baso 1.4% 0.1×10⁹/L

Forgive the rant...

- Manitoba Health regulations prohibit the ordering of laboratory tests in panels
 - e.g. liver enzymes must be ordered separately:
 - AST, ALT, alk phos, GGT
- EVEN THOUGH all the CBC results are generated by the instrument automatically, MB Health does not permit private labs to report anything you didn't order
- SO UNTIL WE CAN FIX THIS, please order Hb, WBC, platelets, red cell indices (ie. MCV), and auto diff every time. IT COSTS NO EXTRA

Peripheral Blood Smear - normal

Case 1: 44 y.o. man with fatigue and easy bruising

WBC 1.1×10⁹/L

(Hb) 55 g/L

RBC $1.6 \times 10^{12} / L$

Hct .162

(MCV) 99 fL

MCH 33.7 pg

MCHC 340 g/L

RDW 12

(Plts) 13×10⁹/L

Case 1: 44 y.o. man with fatigue and easy bruising

WBC 1.1×10⁹/L

(Hb) 55 g/L

RBC $1.6 \times 10^{12} / L$

Hct .162

(MCV) 99 fL

MCH 33.7 pg

MCHC 340 g/L

RDW 12

(Plts) 13×10⁹/L

This man may have:

- A. AML
- B. Aplastic anemia
- C. CHOP chemotherapy 12 days earlier
- D. Myelodysplastic syndrome
- E. Multiple myeloma
- F. Burkitt's lymphoma
- G. Alcohol?
- H. Any of the above

look at all the values in the CBC

In this case ...

Pattern = pancytopenia (WBC, Hgb, platelets all low)

Interpretation:

- Probable marrow disorder, toxicity or infiltration
- Of the list, the least likely would be chemotherapy. With acute myelosuppression, hemoglobin would fall more slowly

Which of the following would you do next?

- CT chest and abdomen
- Blood smear
- Bone marrow biopsy
- LFTs
- Serum protein electrophoresis
- B12 level
- ferritin

Case 1: 44 y.o. man with fatigue and easy bruising

WBC $1.1 \times 10^9 / L$

Hb 55 g/L

RBC $1.6 \times 10^{12} / L$

Hct .162

MCV 99 fL

MCH 33.7 pg

MCHC 340 g/L

RDW 12

Plts $13\times10^9/L$

What would you do next?

- Blood smear
- Bone marrow biopsy
- LFTs
- Serum protein electrophoresis
- B12 level
- ferritin

What if the blood film looks like this?

"Peripheral blood smear reveals abundant nucleated red blood cells, and marked left shift including myelocytes, promyelocytes and blasts"

The peripheral smear can add a large amount of information in setting of:

- Pancytopenia
- Hemolytic anemia
- Marrow failure anemia
- Thrombocytopenia
- Peripheral smear is NOT useful in microcytic anemias (unless there is some other cytopenia or other problem going on).

23 year old woman, feeling well

WBC $7.1 \times 10^9 / L$

Hb 86 g/L (130-180) RBC $4.1 \times 10^{12}/\text{L} (4.4-5.9)$

Hct .29 (0.40-0.52) MCV 71 fL (80-98)

MCH 21.3 pg

RDW 17 (11.4-14.4)

Plts $440 \times 10^{9}/L$

This woman is most likely to have:

A. Thalassemia trait

MCHC 300 g/L (320-365)

B. Anemia of chronic disease

C. Iron deficiency

D. Aplastic anemia

Pay attention to the MCV

All microcytic anemias are caused by impaired hemoglobin synthesis:

- Iron deficiency
- Thalassemia
- Anemia of inflammation (due to iron sequestration => hypoferremia)
- Congenital sideroblastic anemia (for the zebralovers among you)

What investigation will you do now?

- 1. Serum Ferritin
- 2. Serum iron and TIBC
- 3. Hemoglobin electrophoresis
- 4. CRP
- 5. Referral for gastroscopy and colonoscopy

23 year old woman, feeling well

```
WBC 7.1 \times 10^9/L
```

Hb $116 \text{ g/L} (130-180) \text{ RBC} 5.4 \times 10^{12}/\text{L} (4.4-5.9)$

Hct .39 (0.40-0.52) MCV 69 fL (80-98)

MCH 21.3 pg MCHC 300 g/L (320-365)

RDW 15 (11.4-14.4)

Plts $240 \times 10^{9}/L$

This woman is most likely to have:

- A. Thalassemia trait
- B. Anemia of chronic disease
- C. Iron deficiency
- D. Aplastic anemia

Pay attention to the RBC count (concentration)

A microcytic anemia with elevated RBC can be due to:

- Polycythemia with iron deficiency
- Thalassemia

Another common feature of iron deficiency anemia is that the platelet count is often elevated or high-normal

What investigation will you do now?

- 1. Serum Ferritin
- 2. Serum iron and TIBC
- 3. Hemoglobin electrophoresis
- 4. Review previous blood counts in eChart
- 5. Referral for gastroscopy and colonoscopy

The best biopsy is a chart biopsy

- The evolution of hematological variables tells a lot about what pathology is involved
- For example the microcytosis in thalassemia trait does not vary, while iron deficiency does
 - A previously normal MCV rules out thalassemia trait as effectively – and much more cheaply – than specialized tests

63 year old woman complains of fatigue, and stiff shoulders in the mornings. A CBC a year earlier was normal.

WBC $8.1 \times 10^9 / L$

Hb 103 g/L RBC $4.14 \times 10^{12}/\text{L}$

Hct .33 MCV 80.3 fL

MCH 24.9 pg MCHC 310 g/L

RDW 14

Plts $403 \times 10^{9}/L$

This woman is most likely to have:

- A. Thalassemia trait
- B. Anemia of chronic disease
- C. Iron deficiency
- D. Myelodysplastic syndrome

Iron Deficiency Anemia	Anemia of inflammation or chronic disease
Decreased serum iron	Decreased serum iron
Increased TIBC (=transferrin)	Decreased TIBC (=transferrin)
Decreased ferritin	Increased ferritin
Decreased marrow storage iron	Increased marrow iron in macrophages

Rule of thumb #6 (of sorts...)

Anemia of inflammation is most often normocytic or borderline microcytic, but hypochromic

- Inflammatory (mainly through IL-6) increases levels of hepcidin, and hepcidin causes sequestration of iron in macrophages, lowering serum iron, thus starving erythroid progenitors
- Since red cells last ~100 days, microcytosis takes months to occur (though reticulopenia occurs quickly).

78 year old man complains of shortness of breath with walking, and stumbles often

WBC $3.7 \times 10^9/L$

Hb 70 g/L RBC $1.58 \times 10^{12}/\text{L}$

Hct .20 MCV 130 fL

MCH 44.2 pg MCHC 340 g/L

RDW 19

Plts $103 \times 10^{9}/L$

Which test(s) would be most useful?

- A. Serum folate
- B. Serum B12
- C. Reticulocyte count
- D. Blood smear
- E. A look at the DPIN

MCV very high = megaloblastic anemia: check B12 and DPIN

Differential diagnosis

- B12 deficiency
- Folate deficiency, outside North America
- Antimetabolite drug therapy
 - Hydroxyurea, AZT, azathioprine, MTX

Neutrophils show hypersegmentation All cell lines will go down but anemia is most pronounced

67 year old woman who is pale and jaundiced

WBC $4.7 \times 10^9/L$

Hb 97 g/L RBC $2.85 \times 10^{12}/\text{L}$

Hct .29 MCV 104 fL

MCH 35.6 pg MCHC 340 g/L

RDW 15

Plts $203 \times 10^{9}/L$

What is the difference diagnosis here?

Mild macrocytosis has a broader differential diagnosis

- Early megaloblastic anemia
- Hemolysis (because reticulocytes are large)
- Myelodysplasia
- Liver disease (not necessarily anemic)
- Alcohol
- Some cases of myeloma, aplastic anemia, etc
- Hypothyroidism is on this list in some text books, but I've never seen it

67 year old woman who is pale and jaundiced

WBC $4.7 \times 10^9/L$

RBC $2.85 \times 10^{12}/L$ Hb 97 g/L

Hct .29

MCH 35.6 pg

RDW 15

Plts $203 \times 10^{9}/L$

MCV 104 fL

MCHC 340 g/L

Which test(s) would be most useful?

- Bone marrow
- Serum B12
- C. Reticulocyte count
- D. Blood smear
- Liver enzymes

37 year old woman who is pale and jaundiced

WBC $6.7 \times 10^9/L$

Hb 67 g/L RBC $2.85 \times 10^{12}/\text{L}$

Hct .20 MCV 95 fL

MCH 31.8 pg MCHC 340 g/L

RDW 16

Plts $303 \times 10^{9}/L$

Which test(s) would be most useful?

- A. Bone marrow
- B. Serum B12
- C. Reticulocyte count
- D. Blood smear
- E. Liver enzymes

In normocytic anemia (and mildly macrocytic anemia), check the reticulocyte count AND get a blood smear

- Retic count distinguishes hemolytic from hypoproliferative anemias
- Blood smear sheds information about the specific process

37 year old woman who is pale and jaundiced

WBC $6.7 \times 10^9/L$

Hb 67 g/L RBC $2.10 \times 10^{12}/\text{L}$

Hct .20 MCV 95 fL

MCH 31.8 pg MCHC 340 g/L

RDW 16

Plts $303 \times 10^{9}/L$

Retics $330 \times 10^9/L$

Which test(s) would be most useful?

A. Direct bilirubin

B. Total bilirubin

C. Haptoglobin

D. Blood smear

E. LDH

(*Especially) if reticulocyte count is elevated, check LDH, direct & total bilirubin, and haptoglobin

Can be useful for normocytic anemia without a discernable cause)

Elevated retic count can be due to:

- Hemolysis
- Recover from
 - Acute blood loss
 - Nutrient deficiency (iron, B12)
 - Myelosuppression

23 year old woman complains of bruising

WBC $6.7 \times 10^9/L$

Hb 130 g/L RBC 4

Hct .38

MCH 30.6 pg

RDW 13

Plts $3 \times 10^9/L$

RBC $4.1 \times 10^{12}/L$

MCV 90 fL

MCHC 340 g/L

What is the differential?

What do you want to know?

- A. LDH
- B. Retic count
- C. Recent new medications
- D. Blood smear

In severe, isolated thrombocytopenia, first

 Rule out platelet clumping (pseudothrombocytopenia)

Then consider

- Medications including tonic water
 - (p.s....its never the medication)
- ITP

23 year old woman complains of bruising

WBC $6.7 \times 10^9/L$

Hb 83 g/L RBC $2.71 \times 10^{12}/\text{L}$

Hct .24 MCV 90 fL

MCH 30.6 pg MCHC 340 g/L

RDW 15

Plts $43 \times 10^{9}/L$

What do you want to know?

A. LDH

B. Retic count

C. Recent new medications

D. Blood smear

E. Creatinine

When platelets and hemoglobin are both low, consider:

- Microangiopathy (TTP, HUS)
 - Rule out by blood film
- Thrombocytopenia-exacerbated bleeding with acute blood loss

58 year old man complains of bruising

WBC $3.7 \times 10^9/L$

Hb 143 g/L RBC $4.23 \times 10^{12}/\text{L}$

Hct .43 MCV 102 fL

MCH 33.8 pg MCHC 331 g/L

RDW 15

Plts 83 x 10⁹/L What could be going on here??

What would you like to do?

58 year old man complains of bruising

WBC $3.7 \times 10^9/L$

Hb 143 g/L RBC $4.23 \times 10^{12}/\text{L}$

Hct .43 MCV 102 fL

MCH 33.8 pg MCHC 331 g/L

RDW 15

Plts $83 \times 10^{9}/L$

What do you want to know?

- A. Medical History (?infection)
- B. Physical exam!
- C. Medications
- D. Liver enzymes and INR
- E. Blood smear

When platelets and WBC are both moderately low, think about hypersplenism

Objective

To develop an efficient approach to interpret the information contained in the CBC in assessing hematological and systemic diseases

Take Home Messages

- Awesome medical diagnoses (not just hematologic ones) can be made just starting with the CBC
- 2. Order all components of the CBC, all of the time
- Rid yourself of the MCH (and MCHC for the most part) and consider the algorithm provided
- 4. Focus on absolute values and not percents (%)

1. A 23 year old Nigerian man has the following CBC:

WBC $5.1 \times 10^9 / L$

Hb 96 g/L

RBC $4.5 \times 10^{12} / L$

Hct .32

MCV 71 fL

MCH 21.3 pg

MCHC 300 g/L

RDW 14.5

Plts $13\times10^9/L$

What is the likely diagnosis?

A. Thalassemia

B. Iron deficiency

C. ITP

D. TTP

E. There must be more than one diagnosis

1. A 23 year old Nigerian man has the following CBC:

WBC $5.1 \times 10^9 / L$

Hb 96 g/L

RBC $4.5 \times 10^{12} / L$

Hct .32

MCV 71 fL

MCH 21.3 pg

MCHC 300 g/L

RDW 14.5

Plts $13\times10^9/L$

What is the likely diagnosis?

A. Thalassemia

B. Iron deficiency

C. ITP

D. TTP

E. There must be more than one diagnosis