

Health Professionals

Is this bleeding normal?
Evaluating a child with a suspected bleeding disorder

Sara Israels MD FRCPC
Pediatric Hematology/Oncology
Dept. Pediatrics and Child Health
and CancerCare Manitoba

Disclosures

FINANCIAL DISCLOSURE

Grants/Research Support:

Diagnostic Services Manitoba

Children's Hospital Research Institute of Manitoba

Speaker bureau/Honoraria: None

Consulting fees: None

Objectives

After this session participants will:

- 1. Have an approach to evaluating a child who presents with bleeding
- 2. Be familiar with common bleeding disorders in children as well as other common causes of bleeding
- 3. Recognize presentations of bleeding in children requiring urgent referral to a hematologist

What do you need to form a blood clot?

- 1. A normal blood vessel
- Platelets:
 Normal number
 Normal function
- Coagulation factors:I to XIII

Referral to Pediatric Hematology

"Dear Pediatric Hematologist:

Please see this seven year old boy with recurrent epistaxis for investigation of a bleeding disorder."

- 1. Does this child have a bleeding disorder?
- 2. What kind of investigation does he need?

Evaluation of the bleeding patient

Tip #1: Most children with epistaxis do not have a bleeding disorder

- 30% of children < 5 years and 56% of children aged 6 - 10 years have had at least one nosebleed.
- Why so common?
 - Anatomy
- Local causes
 - ✓ Trauma: nose-picking*; foreign bodies

 - ✓ Mucosal irritation: dry air*; allergic rhinitis; inhaled irritants, URIs or other local infection
 - Anatomic abnormalities, deviated septum, benign tumors
- Systemic causes

(UpToDate 2016)

Bleeding assessment tools (BAT)

- Standardized questionnaires that can help quantify clinical bleeding symptoms/signs
 - Consist of a series of questions and a scoring system
 - BATs have been created for different purposes and with different scoring systems; several have been validated
- BATs can be:
 - Age specific: adults or children
 - Disease specific: VWD, platelet function disorders
 - Symptom specific: epistaxis and menorrhagia

ISTH-BAT can be used for all ages, all symptoms.

It has been evaluated in >1000 adults and >300 children to develop normal ranges.

ISTH-BAT scoring sheet

SYMPTOMS (up to the time of diagnosis)	SCORE				
ulugiiosis)	0,8	1 ⁹	2	3	4
Epistaxis	No/trivial	- > 5/year or - more than 10 minutes	Consultation only*	Packing or cauterization or antifibrinolytic	Blood transfusion or replacement therapy (use of hemostatic blood components and rFVIIa) or desmopressin
Cutaneous	No/trivial	For bruises 5 or more (> 1cm) in exposed areas	Consultation only*	Extensive	Spontaneous hematoma requiring blood transfusion
Bleeding from minor wounds	No/trivial	- > 5/year or - more than 10 minutes	Consultation only*	Surgical hemostasis	Blood transfusion, replacement therapy, or desmopressin
Oral cavity	No/trivial	Present	Consultation only*	Surgical hemostasis or antifibrinolytic	Blood transfusion, replacement therapy or desmopressin
GI bleeding	No/trivial	Present (not associated with ulcer, portal hypertension, hemorrhoids, angiodysplasia)	Consultation only*	Surgical hemostasis, antifibrinolytic	Blood transfusion, replacement therapy or desmopressin

14 categories: hematuria, tooth extraction, surgery, menorrhagia, postpartum hemorrhage, muscle hematoma, hemarthrosis, CNS bleeding, other.

(www.isth.org/resource/resmgr/ssc/isth-ssc_bleeding_assessment.pdf)

Value of BATs

ISTH-BAT cut-off scores:

- ≥4 for men
- ≥6 for women
- ≥3 for children

Utility of ISTH-BAT:

- Sensitivity 97%
- Specificity 50%
- NPV 99%

Tip #2:

A validated BAT score does not provide a diagnosis, but it can help to identify which patients do <u>not</u> need further investigation.

Approach to the bleeding child

(From: Revel-Vilk S, Rand ML, Israels SJ. Approach to the Bleeding Child. In: SickKids Handbook of Pediatric Thrombosis and Hemostasis. Karger 2013)

What laboratory tests should I order?

Most algorithms are based on basic testing followed by specialized testing:

- 1. CBC with platelet count
- 2. PT/INR, PTT
- 3. Specialized testing (requires consultation with a Hematologist or Hematopathologist)

It depends where you practice:

- Recent changes to DSM guidelines have removed the PTT from general requests except for UFH monitoring or as part of evaluation for DIC
- Other laboratory services still provide PTT testing
- PTTs can always be requested via Hematopathologist

Why the PTT is a poor test for bleeding

- Inappropriately sensitive:
 - Lupus anticoagulants
 - Clotting factor deficiencies that do not cause bleeding (FXII)
- Inadequately sensitive:
 - Mild clotting factor deficiencies
- Not built to measure:
 - Von Willebrand Disease
 - Factor XIII deficiency
 - Some fibrinogen abnormalities
 - Fibrinolytic defects
 - Platelet disorders

What the PTT is good for:

- Severe clotting factor deficiencies
- Multiple clotting factor deficiencies
- Unfractionated heparin monitoring

Tip #3: Laboratory screening tests may not help you

- The exception is the CBC
- Critically ill children often have abnormalities if they have sepsis or consumptive coagulopathy
- Other children:
 - Rarely have abnormalities of PTs unless they have Vitamin K deficiency
 - Abnormal PTTs are more likely to be caused by infection-associated LA than a factor deficiency
 - More common bleeding disorders require specialized testing

Referral to Pediatric Hematology

"Dear Pediatric Hematologist:

Please see this 5 year old girl, previously well, with sudden onset of bruising, a petechial rash and epistaxis. She previously had an adenoidectomy without bleeding complications."

- 1. Does this child have a bleeding disorder?
- 2. What kind of investigation does she need?

	Patient	Ref. Range
WBC x 10 ⁹ /L	11.2	5.0-15
HGB (g/L)	115	115-125
НСТ	0.34	0.34-0.4
RBC x 10 ¹² /L	3.9	3.9-5.4
MCV (fL)	79.8	75-87
MCH (pg)	27.2	24-34
RDW (%)	13.1	11.4-14.4
Retic. x 10 ⁹ /L	65	25-75
Platelets x 10 ⁹ /L	4	150-400
Blood film	Lymphocytosis Occ. Large platelets	

Primary ITP in children

- Incidence: 4/100,000 children
- Mean age: 5.7 years
- Seasonal variation
- More common in boys than girls
- Previously healthy children
 - >60% have a history of antecedent infectious illness or immunization in the preceding 4 weeks
- Typical abrupt onset of bleeding
- Isolated severe thrombocytopenia
 - > 75% have platelet counts < 20 x 10 9 /L

The special case of thrombocytopenia in a neonate

Tip #4: Thrombocytopenia has many causes in children

- Acute onset of isolated thrombocytopenia in otherwise well children is most likely to be ITP
- Thrombocytopenia associated with other cytopenias raises concerns for bone marrow disorders
- Persistent thrombocytopenia raises the possibility of congenital causes; look for signs of associated anomalies

Referral to Pediatric Hematology

"Dear Pediatric Hematologist:

Please see this 3 month old boy who has developed extensive bruising and swelling at site of venipuncture. No family history of a bleeding diathesis."

- 1. Does this child have a bleeding disorder?
- 2. What kind of investigation does he need?

	Patient	Ref. Range
WBC x 10 ⁹ /L	12.8	5.0-15
RBC x 10 ¹² /L	3.8	2.7-4.9
HCT (L/L)	0.34	0.28-0.44
HGB (g/L)	120	90-140
MCV (fL)	85	74-115
RDW (%)	13.5	11.4-14.4
Retic. x 10 ⁹ /L	65	25-75
Platelets x 10 ⁹ /L	320	150-400
Blood film	Typical for age	
PT (sec)/ INR	12/1.1	10-12.5/0.9-1.1
PTT (sec)	87	26-38

Factor VIII 1% (50-150) Factor IX 62% (50-150)

What does hemophilia look like in young children?

Tip #5: Hemophilia in young boys looks different

- An unusual bruising pattern or soft tissue bleeding
 - ✓ Always be alert to the possibility of nonaccidental trauma
- Joint bleeds are rare in children before they are walking
- There is not always a family history:
 - √ 30% of cases are the result of new mutations

An aPTT is helpful if the question is hemophilia

When to consider referral to Pediatric Hematology

- 1. Thrombocytopenia (platelet count < 100 x 10⁹/L), particularly if accompanied by additional cytopenias
- 2. A severe or unusual pattern of bleeding in a young child*
- 3. A child with bleeding symptoms and a significant family history of bleeding [with or without a diagnosis]; sooner if surgery is planned*
- 4. Menorrhagia in adolescent girls, severe enough to cause iron-deficiency anemia or impact ADL *

^{*} Likely to have a positive BAT score

Take Home Messages

- 1. Most mucocutaneous bleeding in children is not the result of a hemostatic disorder.
- 2. A careful history and a BAT may be more helpful than laboratory screening tests (except CBC) in determining the need specialized testing.
- 3. Remember that your pediatric hematologist cannot always give you a definitive diagnosis for mucocutaneous bleeding.
- 4. Be alert to severe bleeding conditions that require urgent attention.

ISTH Bleeding Assessment Tool:

https://www.isth.org/resource/resmgr/ssc/isth-ssc_bleeding_assessment.pdf

Questions?

sisraels@cancercare.mb.ca

Question:

Frequent epistaxis in a child is more likely to be a sign of a bleeding disorder if any of the following are true, except:

- A. He has seasonal allergies.
- B. He previously had nasal cautery to manage the epistaxis.
- C. His brother also has epistaxis.
- D. He has a positive history for bleeding at sites other than the nose.

Question:

Frequent epistaxis in a child is more likely to be a sign of a bleeding disorder if any of the following are true, except:

- A. He has seasonal allergies.
- B. He previously had nasal cautery to manage the epistaxis.
- C. His brother also has epistaxis.
- D. He has a positive history for bleeding at sites other than the nose.