

Blood

Disorders Day 2021

FOR Health Professionals

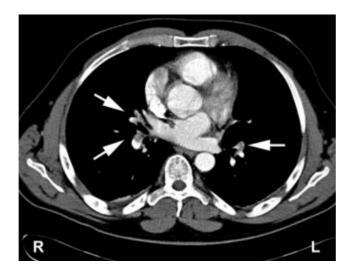
The CAT's out of the bag: Management of cancer associated thrombosis in the era of DOACs

Marc Carrier MD

Presenter disclosure

- Marc Carrier:
- Relationships with commercial interests:
 - Grants/Research Support: BMS, Leo Pharma, Pfizer
 - Speakers Bureau/Honoraria: NA
 - Consulting Fees: Sanofi, Bayer, BMS, Pfizer, Leo Pharma, Valeo
 - Other: NA

Learning objectives


- Review the epidemiology and clinical relevance of venous thromboembolic complications in cancer patients
- Summarize the evidence on the efficacy and safety of different anticoagulant regimens (LMWH or DOAC) for the management of cancerassociated thrombosis (CAT)
- Discuss how to tailor anticoagulation based on specific patient characteristics (e.g. Tumor types, intra-cranial metastatic disease or primary brain tumor, drug-to-drug interactions)

77 years old with hormone-naïve metastatic (bone and brain) prostate cancer recently started on ADT and docetaxel

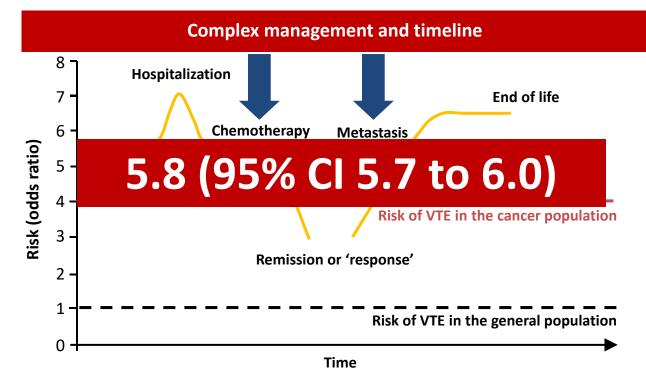
- Presented to the ER with progressive SOB and pleuritic chest pain.
- HR: 100 beats/min; BP: 105/60;RR: 22; T: 36.7C and 95% of on room air
- PMdHx: HTN, DM2
- Hb: 115 g/L; plt: 350 X 10^9/L; CrCl: 65 cc/min
- CTPA reporting a bilateral segmental PEs

Schaefer WM et al. Der Nuklearmediziner 99-56.36:27;

Incidence

Annual incidence of VTE in the general population is 117 per 100,000

- Cancer alone was associated with a 4.1-fold risk of thrombosis
- Chemotherapy increased the risk 6.5-fold


Combining these estimates yields an approximate annual incidence of venous thromboembolism (VTE) of 1 per 200 in a population of cancer patients

Heit JA et al. Arch Intern Med. 2000; 160: 809-815.

CancerCare Manitoba ActionCancerManitoba

Cancer and VTE

Lyman GH, Cancer 2010;7:1334-1349

Incidence rate of CAT by cancer type

Incidence rate (95% CI) of first VTE per 100 person-years by cancer type

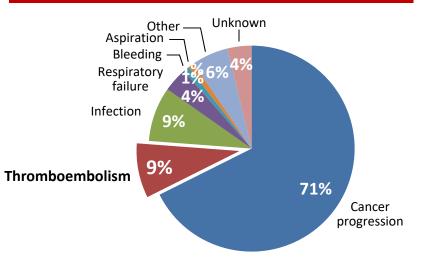
Age	Total ≥18
Bladder	2.7 (2.4–3.0)
Breast	3.2 (2.9–3.4)
Colon	6.7 (6.3–7.2)
Lung	10.1 (9.5–10.8)
Prostate	4.4 (4.0–4.7)
Uterus	7.0 (5.9–8.3)
Haematological	4.5 (4.1–4.8)
Brain	12.1 (10.3–14.0)
Ovary	11.9 (10.6–13.2)
Pancreas	14.6 (12.9–16.5)
Stomach	10.8 (9.5–12.3)

Cohen AT et al, Thromb Haemost 2017;117:57-65

Patient demographics

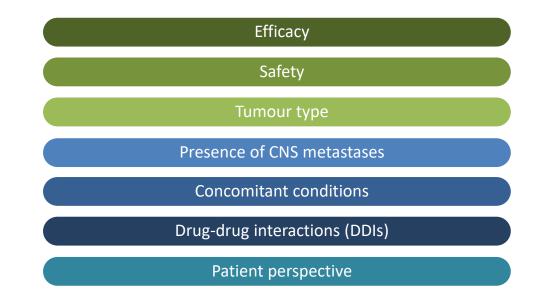
Patients with active cancer and a first VTE (N=6592)

	DVT (n=3055)	PE (n=3537)	Total (N=6592)
Common cancer types, n (%)			
Prostate (males)	278 (19.1)	287 (16.1)	565 (17.5)
Breast (females)	225 (14.0)	281 (16.0)	506 (15.1)
Lung	315 (10.3)	603 (17.0)	918 (13.9)
Colon	384 (12.6)	443 (12.5)	827 (12.5)
Haematological	360 (11.8)	309 (8.7)	669 (10.1)
Ovarian (females)	136 (8.5)	182 (10.3)	318 (9.5)
Bladder	186 (6.1)	133 (3.8)	319 (4.8)
Uterus (females)	83 (5.2)	58 (3.3)	141 (4.2)
Pancreas	129 (4.2)	131 (3.7)	260 (3.9)
Stomach	104 (3.4)	133 (3.8)	237 (3.6)
Brain	79 (2.6)	87 (2.5)	166 (2.5)

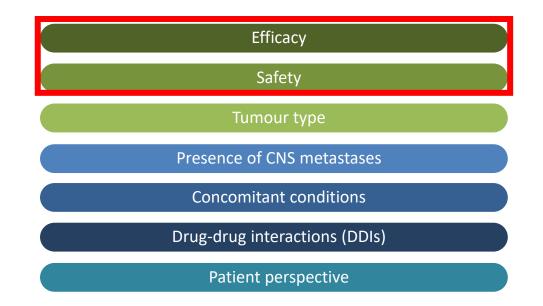

Cohen AT et al, Thromb Haemost 2017;117:57-65

VTE as a cause of death

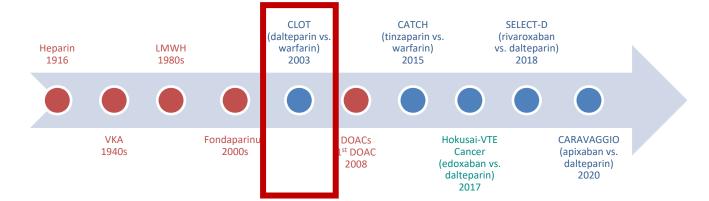
- Thromboembolism is the second leading cause of death in patients with cancer
- Annual death rate for VTE: 448 per 100,000 cancer outpatients
 - 47-fold increase over the general population

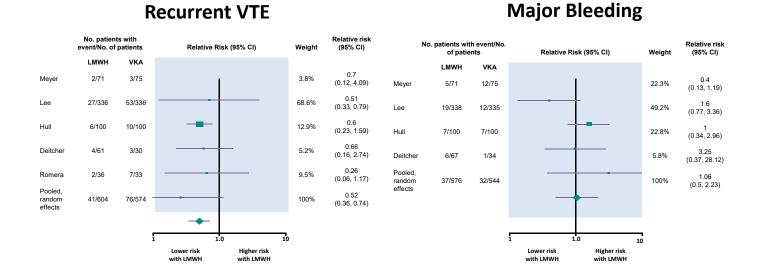

Cancer outpatient mortality

1. Khorana AA et al, J Thromb Haemost 2007;5:632–634; 2. Khorana AA et al, Thromb Res 2010;125:490–493



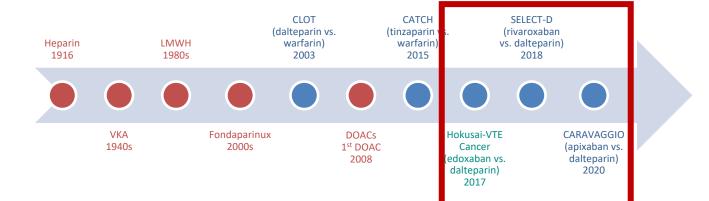
Factors for clinicians to consider in selecting appropriate anticoagulant for patients with CAT


Factors for clinicians to consider in selecting appropriate anticoagulant for patients with CAT


CancerCare Manitoba ActionCancerManitoba

Evolution of anticoagulant therapy: Treatments and trials

LMWH vs. VKA: Meta-analysis


Significantly lower risk of VTE recurrence with LMWH vs. VKA, with similar risk of major bleeding

Carrier M et al. Thromb Res. 2014;134:1214-9.

CancerCare Manitoba ActionCancerManitoba

Evolution of anticoagulant therapy: Treatments and trials

DOAC vs. LMWH for acute CAT

	HOKUSAI-VTE Cancer	SELECT-D	CARAVAGGIO
Trial design:	Non-inferiority Phase 3	Pilot	Non-inferiority Phase 3
Sample size	1046	406	1155
DOAC:	LMWH X 5 days then edoxaban 60 mg PO daily	Rivaroxaban 15 mg BID X 21 days then 20 mg daily	Apixaban 10 mg BID X 7 days then 5 mg BID
LMWH:	Dalteparin 200 U/kg daily X 1 month the 150 U/Kg daily	Dalteparin 200 U/kg daily X 1 month the 150 U/Kg daily	Dalteparin 200 U/kg daily X 1 month the 150 U/Kg daily
Dose reduction of DOAC:	< 60 kg; CrCl: 30-50 cc/min; drug-to- drug interactions	NA	NA
Primary outcome:	Recurrent VTE or major bleeding	Recurrent VTE	Recurrent VTE
Duration of treatment	12 months	6 months	6 months

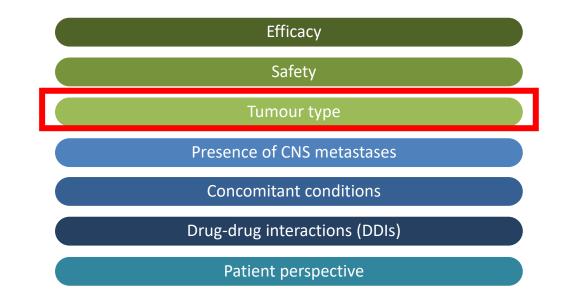
Raskob GE et al. N Engl J Med. 2018 Feb 15;378(7):615-624 Young AM, et al. J Clin Oncol 2018 Jul 10;36(20):2017-2023; Agnelli et al. N Engl J Med 2020; 382:1599-1607

Main outcomes at 6 months from Hokusai-VTE Cancer, SELECT-D and Caravaggio

			Re	curre	ent V	/TE				
Study	DOAC agent P	DOAC atients Ev		LMW Patients		Risk I	Ratio	RR	95%-CI	Weight
Hokusai VTE Cancer SELECT-D Caravaggio	edoxaban rivaroxaban apixaban	522 203 576	34 7 32	524 203 579	46 17 46		-	0.41	[0.48; 1.14] [0.17; 0.97] [0.45; 1.08]	45.4% 11.2% 43.4%
Random effects mode Heterogeneity: $I^2 = 0\%$, τ^2		1301 ³	73	1306	109 0.1 Fav	1 0.2 0.5 1 rors DOAC	2 Favors	0.68 5 10 s LMWH	[0.39; 1.17]	100.0%

				ajor	bleedi	"5			
Study	DOAC agent	DO Patients		LMV Patients		Risk Ratio	RR	95%-CI	Weight
lokusai VTE Cancer	edoxaban	522	29	524	17		1.71	[0.95; 3.08]	40.3%
SELECT-D	rivaroxaban	203	11	203	6		1.83	[0.69; 4.86]	18.0%
Caravaggio	apixaban	576	22	579	23		0.96	[0.54; 1.71]	41.7%
Random effects mode leterogeneity: $I^2 = 15\%$,		1301	62	1306	46		1.36	[0.55; 3.35]	100.0%

Mulder et al., Blood 2020 : doi/10.1182/blood.2020005819


Secondary outcome at 6 months from Hokusai-VTE Cancer, SELECT-D and Caravaggio

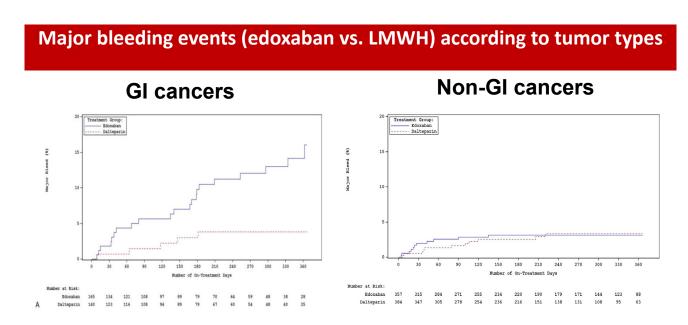
CRNMB									
Study	DOAC agent	DO Patients		LMW Patients		Risk Ratio	RR	95%-CI	Weight
Hokusai VTE Cancer	edoxaban	522	64	524	43		1.49	[1.04; 2.16]	43.2%
SELECT-D	rivaroxaban	203	25	203	7		3.57	[1.58; 8.07]	17.5%
Caravaggio	apixaban	576	52	579	35		1.49	[0.99; 2.26]	39.3%
Random effects mode Heterogeneity: $I^2 = 49\%$,		1301	141	1306	85 _Г		1.74	[0.64; 4.77]	100.0%
·····,	,,				0.1 Fav	0.2 0.5 1 2 5 ors DOAC Favors LM	10 /VH		

Mulder et al., Blood 2020 : doi/10.1182/blood.2020005819

Factors for clinicians to consider in selecting appropriate anticoagulant for patients with CAT

CancerCare Manitoba ActionCancerManitoba

Hokusai-VTE Cancer: Types of outcomes contributing to major bleeding


	Edoxaban (n=522)	Dalteparin (n=524)
Major bleeding	36 (6.9%)	21 (4.0%)
Fatal	0	2 (0.4%)
ICH	2 (0.4%)	4 (0.8%)
Upper Gl	17 (3.8%)	3 (0.6%)
Lower GI	3 (0.6%)	3 (0.6%)
GU	5 (1.0%)	0
Other	6 (1.1%)	7 (1.3%)

Excess major bleeding with edoxaban mainly due to upper GI

Raskob GE et al. N Engl J Med. 2018;378:615-24.

Hokusai-VTE Cancer: Types of cancers contributing to major bleeding

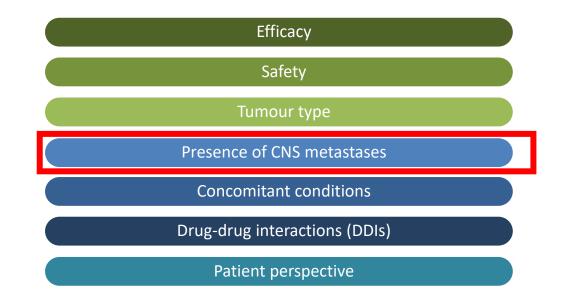
Kraaijpoel et al. Thromb Haemost 2018;118:1439-1449.

SELECT-D: Types of outcomes contributing to major bleeding

	Rivaroxaban (n=203)	Dalteparin (n=203)
lajor bleeding	11	6
Esophageal	3	1
Stomach	2	3
Lower GI	1	0
GI, site unknown	2	0
GU	1	0
Other	2	2

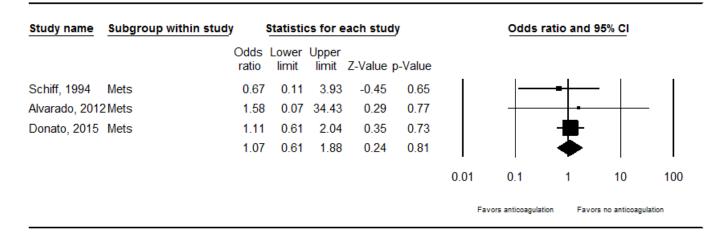
Excess major bleeding with rivaroxaban mainly due to GI bleeds

Young AM et al. J Clin Oncol. 2018;36:2017-23.


CARAVAGGIO: Types of outcomes contributing to major bleeding

	Apixaban	Dalteparin
	(n=576)	(n=579)
eeding Site	Major bleeding	Major bleeding
otal, n (%)	22 (3.8)	23 (4.0)
Fatal	0	2
Abdominal	1	0
Intracranial	0	2
Intraspinal	0	1
Pericardial	1	0
Intra-articular	0	1
Retroperitoneal	0	1
Cutaneous	1	1
GU	4	1
Lung	1	1
Muscle	0	2
Upper airways	1	2
GI	11	10
Upper	5	6
Lower	6	4
Undetermined site	2	2

Agnelli G et al. N Engl J Med 2020; 382:1599-1607

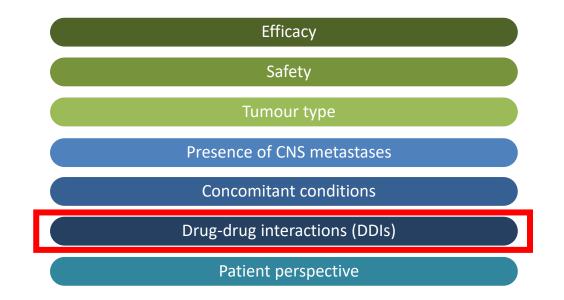

Factors for clinicians to consider in selecting appropriate anticoagulant for patients with CAT

Risk of intracranial hemorrhage with LMWH or warfarin and intracranial metastatic disease

Intracranial disease

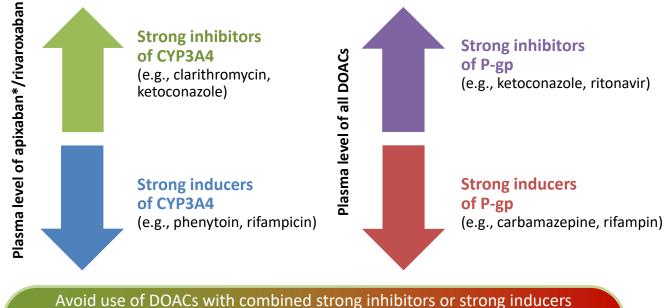
OR: 1.07 (95% CI 0.61-1.88, P=0.81, I²=0%)

Zwicker J, et al. J Thromb Haemostas. 2016;14(9):1736-1740.


Risk of ICH with DOACs for patient with brain tumors and intracranial metastasis

- A cohort study evaluating the safety of DOACs in patients with cancerassociated thrombosis and intracranial metastatic disease or primary brain tumours.
- 67 patients with primary brain tumours
 - DOACs (n=20); LMWH (n=47)
 - No patients with primary brain tumour receiving DOAC had ICH
- 105 patients with intracranial metastatic disease
 - DOACs (n=21); LMWH (n=84)
 - DOACs did not increase the risk of ICH relative to LMWH in patients with intracranial brain metastasis

Carney BJ et al. J Thromb Haemost 2019 Jan;17(1):72-76.



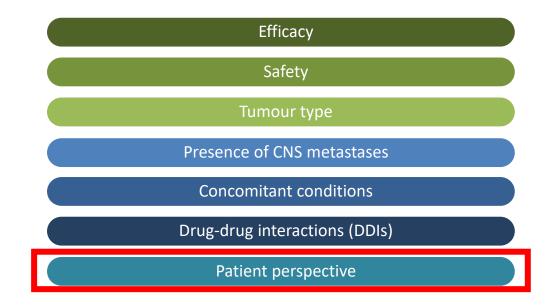
Factors for clinicians to consider in selecting appropriate anticoagulant for patients with CAT

Clinical relevance of DDIs with DOACs

affecting plasma levels

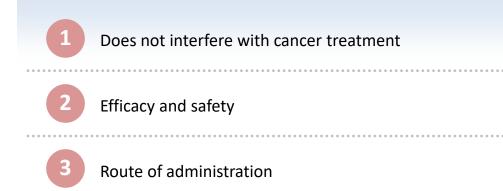
Drug-drug interactions

Risk of hospitalization with hemorrhage among patients taking clarithromycin or azithromycin and DOACs


		Cumulative	HR (95% CI)			
Characteristic	No. of events	incidence, %	Unadjusted	Adjusted		
Major hemorrhage						
Clarithromycin	51/6592	0.77	1.81 (1.27-2.57)	1.71 (1.20-2.45) ^a		
Azithromycin	79/18 351	0.43				
Any hemorrhage or receipt of pRBC transfusion						
Clarithromycin	109/6592	1.65	1.53 (1.21-1.93)			
Azithromycin	199/18 351	1.08		1.53 (1.21-1.94) ^a		

Drug-drug interactions were associated with a small but statistically significantly greater 30-day risk of hospital admission with major hemorrhage.

Hill K et al. JAMA Intern Med 2020 Aug 1;180(8):1052-1060


Factors for clinicians to consider in selecting appropriate anticoagulant for patients with CAT

Patient's perspective

Most important attributes for anticoagulation choices

Noble SI et al. Haematologica. 2015; 100:1486–1492.

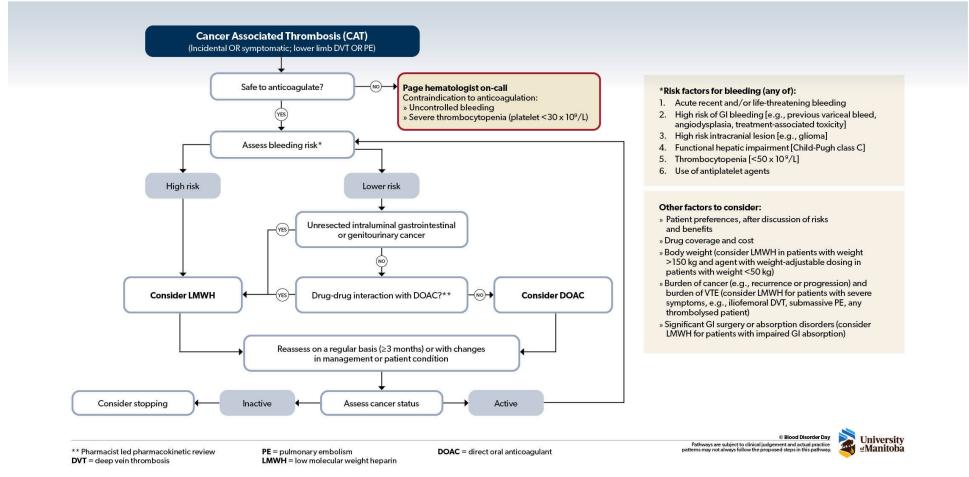
Most Recent Recommendations: ASH 2021

Guidelines for management of VTE: Prevention and treatment in patients with cancer

• Recommendation 20

- For patients with cancer and VTE, the ASH guideline panel suggests DOAC (apixaban or rivaroxaban) or LMWH be used for initial treatment of VTE for patients with cancer (conditional recommendation, very low certainty in the evidence of effects $\oplus \bigcirc \bigcirc \bigcirc$)

• Recommendation 23


- For the short-term treatment of VTE (3-6 months) for patients with active cancer, the ASH guideline panel *suggests* DOAC (apixaban, edoxaban, or rivaroxaban) over LMWH (conditional recommendation, low certainty in the evidence of effects $\oplus \oplus \bigcirc \bigcirc$).

Lyman G et al. *Blood Adv* (2021) 5 (4): 927–974. Available at: <u>https://doi.org/10.1182/bloodadvances.2020003442</u>

Cancer Associated Thrombosis (CAT)

CancerCare Manitoba ActionCancerManitoba

Key takeaway

- DOACs, including apixaban, edoxaban, and rivaroxaban, provide an effective option to LMWH for some/most patients with CAT and are preferred for most patients
- Use of some DOACs in patients with GI cancers and history of GI bleeding is associated with higher rates of bleeding
- Patient characteristics, including bleeding risk, cancer origin, comorbidities, and potential DDIs, need to be considered when choosing a specific DOAC

Thank you

mcarrier@toh.ca

