

Health Professionals

Iron Chef: Serving up high quality care in the setting of iron deficiency and iron overload

Donald Houston MD PhD FRCPC Emily Rimmer MD MSc. FRCPC May 1, 2020

Health Professionals

Part 1: Iron Homeostasis, Iron Overload, and Laboratory Measures of Iron

Donald S. Houston MD PhD FRCPC

Presenter Disclosure

- Speaker's name: Donald S. Houston
- Relationships with commercial interests:
 - Grants/Research Support: None
 - Speakers Bureau/Honoraria: None
 - Consulting Fees: None
 - Other: I don't eat their food (and I don't take iron)

Mitigating Potential Bias

• Not Applicable

Learning Objectives

- 1. Explain the mechanisms by which the body regulates iron homeostasis, and how defects can lead to iron overload
- 2. Use simple tests (iron, TIBC, and ferritin) to sort out disorders of altered iron status
- 3. Apply strategies to manage iron deficiency and iron overload

Appetizer (empty calories)

- Iron makes up a third of the mass of the Earth, and is 4th most abundant element in Earth's crust (~5%)
- Nonetheless iron is a limiting nutrient that is jealously conserved by the body
- WHO 2011 estimate: anaemia affects around 800 million worldwide (mostly children and women, mostly iron deficiency)

Distribution of iron

Cell type / tissue	Amount
Red cells (hemoglobin) 1 unit of PRBCs ≈ 250mg	2500mg
Storage (mainly liver, also splenic and bone marrow macrophages)	1000mg
Enzymes, myoglobin etc.	400mg
In plasma (bound to transferrin)	4mg
Total	4000mg
	.005% of body mass

Hemoglobin Structure

Files:

bioinformatics.org/firstgla nce/fgij/fg.htm?mol=http: //www.umass.edu/molvis/ bme3d/materials/structur es/1hho_quat.pdb.gz&

Heme

Warning: Contents may be hot!

Free Radicals

- Free iron is highly reactive
- Generates free radicals by the Fenton reaction:

 $Fe^{2+} + H_2O_2 ----> Fe^{3+} + .OH + OH^ Fe^{3+} + H_2O_2 ----> Fe^{2+} + .OOH + H^+$

- Ergo the body must keep iron under very tight control
- E.g. K_d of transferrin is ~10⁻²⁰M

Safe iron handling

- <u>Ferritin</u> is the primary *intracellular* storage protein for iron (the liver is the pantry)
 - 24-subunit spherical cage, tightly sequesters up to 4500 Fe³⁺ ions
 - More iron => more ferritin synthesized
 - Correlates with amount in plasma, though plasma ferritin has no evident function
- Transferrin is the protein that transports iron through plasma to TfR-expressing cells
 - Iron deficiency => increased transferrin synthesis
 - Measured as Total Iron Binding Capacity (TIBC)
 - i.e. *TIBC* = transferrin

Too many cooks...

Iron & Acute phase response

- Inflammatory signals (especially IL-6) trigger changes in hepatic synthesis of many plasma proteins
- Ferritin increases
 - like CRP or fibrinogen
- Transferrin decreases
 - like albumin
- Hepcidin increases
 - Sequestering iron in cells, so serum iron falls

Tests of Iron Status

	Iron overload	Iron deficiency	Inflammation	Iron deficiency + inflammation
Hemoglobin	\leftrightarrow	\downarrow	\checkmark	\checkmark
мсу, мснс	\leftrightarrow	\checkmark	\downarrow or \leftrightarrow	\checkmark
Serum iron	\uparrow	\checkmark	\checkmark	\checkmark
ТІВС	\checkmark	\uparrow	\checkmark	\leftrightarrow
Tsat	(* *)	$\checkmark \checkmark$	\downarrow or \leftrightarrow	\checkmark
Ferritin	\uparrow	↓ **	\uparrow	\leftrightarrow
Hepcidin*	\uparrow	\checkmark	\uparrow	\uparrow or \leftrightarrow

*not available for routine clinical use **preferred test

TIBC = total iron binding capacity = transferrin

Tsat = transferrin saturation = serum iron / TIBC

Causes of Iron overload

- Repeated transfusion (except if for bleeding)
- Hereditary hemochromatosis
 - Defect in sensing of iron status
 - Inappropriately low hepcidin
 - Ferroportin stays wide open
 - Increased absorption and release of iron
 - Tsat constitutively high
- Ineffective erythropoiesis (e.g. thalassemia)
 - High erythroferrone levels made by erythroid marrow
 - Suppression of hepcidin
- Advanced cirrhosis
 - Impaired hepcidin synthesis due to liver failure

Hereditary hemochromatosis

- Almost 10% of population of northern European stock are carriers of mutations in HFE gene
- 1/400 is homozygous for C282Y
- Lifelong slow iron accumulation, typically not symptomatic until 50's or 60's
- Women relatively protected until menopause
- Penetrance (cirrhosis or heart failure) is incomplete
- C282Y/H63D much milder iron loading, very low penetrance
- If fasting Tsat persistently >45%, order HFE genotyping

Rust stains – Toxicities of Iron

- <u>Liver</u>: hepatocellular injury (个 transaminases), cirrhosis, hepatoma
- <u>Pituitary</u>: hypogonadism (loss of libido, erectile dysfunction, amenorrhea), hypothyroidism
- <u>Pancreas</u>: diabetes
- Joints: arthritis classically 2nd and 3rd MCP joints
- <u>Heart</u>: congestive failure and arrhythmias
- <u>Skin</u>: darkening
- Acute iron poisoning very different

Hemochromatosis - management

- Phlebotomy
 - 500ml = 250mg of iron
 - Bleed q1-2 weeks as Hb tolerates
 - May require 40 or more units removed to reach iron neutral state
 - Once ferritin <100, bleed ~4-6 times/year to keep ferritin
 in target range of 50 100
 - Can often meet this need as blood donor

Causes of high ferritin

- Iron overload: the minority!
 - <10% of pts with high ferritin have hemochromatosis</p>
- Inflammation
 - Infections, rheumatologic disorders, renal disease, cancer
- Liver disease esp. fatty liver and alcohol excess
 - Probably commonest cause
- NB: recommended initial test if you suspect hereditary hemochromatosis is Tsat, not ferritin
- If in doubt, liver iron can be measured by MRI

Iron Homeostasis: Take home

- Iron status is maintained by regulating the absorption of iron
- All patients with iron overload have elevated ferritin, but most elevated ferritin is reactive
 - Tsat is preferred initial test for diagnosis of hemochromatosis
- All tests (serum iron, TIBC, and ferritin) are influenced by both iron status and inflammation

Ode to hemochromatosis

When your HFE gene code is wrong, Liver's T2-star signal gets strong 'cuz a lack of hepcidin Has the bowel decidin' To absorb extra Fe all day long

Thank you

donald.houston@umanitoba.ca

