

FOR

Health Professionals

A primer on red cell transfusion in Manitoba

Laura Tapley MD FRCPC (PGY5 Hematology)
Arjuna Ponnampalam MD FRCPC

Presenter Disclosure

- Faculty / Speaker's name: Laura Tapley and Arjuna Ponnampalam
- Relationships with commercial interests
 - Grants/Research Support: None
 - Speakers Bureau/Honoraria: None
 - Consulting Fees: None
 - Other: None

Learning Objectives

The participant will be able to:

- 1. List indications for red blood cell transfusion
- 2. Recognize common transfusion related complications

Focus on

- Transfusion basics
- Transfusion alternatives
- Most common transfusion risks
 - Alloimmunization
 - TACO
- Restrictive transfusion strategy and thresholds

Case #1

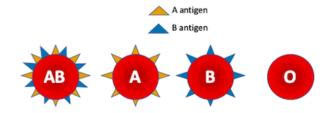
- 28 yo female, G2P1, PMHx menorrhagia, currently 20 weeks gestation
- Mild fatigue, vitally stable, otherwise well
- Routine bloodwork:

Test	Value	Ref Range
HGB	75 g/L	120-160 g/L
MCV	78 fL	80-98 fL
Ferritin	3 ug/L	20-200 ug/L

Case #2

- 80 year old male with history of HTN, CHF
- Prolonged admission following colectomy with primary anastomosis for early stage adenocarcinoma
- Feels weak, too tired to work with physio

Test	Value	Ref Range
HGB	65 g/L	120-160 g/L
MCV	85 fL	80-98 fL
Ferritin	350 ug/L	20-200 ug/L

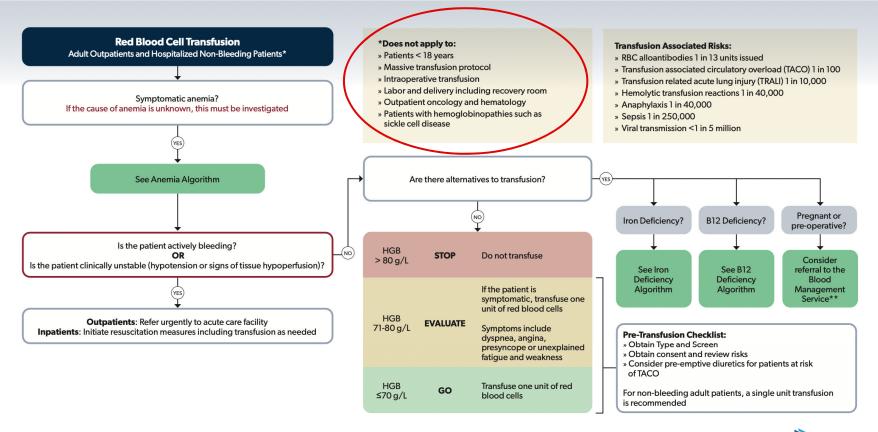

Transfusion Basics – Administration

- Informed consent
- Proper identification of samples, patient and product
- Non-urgent/non-bleeding daytime hours
- Vital sign monitoring (pre, during, post)
- Infuse over 2h (max 4h)
- Expect 10 g/L increase in HGB per unit

Transfusion Basics

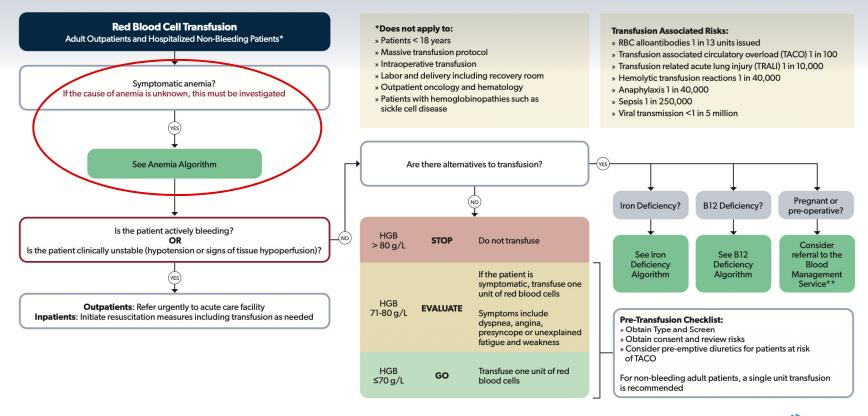
• 1 Unit of RBCs ≈ 300 mL • Stored 1-6 °C for up to 42 days

Pre-Transfusion Testing	Purpose
ABO Group	Patient RBCs tested for A and B antigen
Rh (D) Group	Patient RBCs tested for D antigen
Antibody Screen	Screen for RBC alloantibodies formed from prior transfusion or pregnancy
Antiglobulin Crossmatch	When RBC alloantibodies present. Incubation of donor RBCs, recipient plasma/serum and anti-IgG to assess for cross reactivity


Transfusion Basics – Prevention

- Identify cause of anemia and assess for alternative therapies
- Minimize unnecessary phlebotomy in stable inpatients
- Restrictive transfusion approach (more to follow)
- One unit at a time!

Red Blood Cell Transfusion


Applicable Patient Population

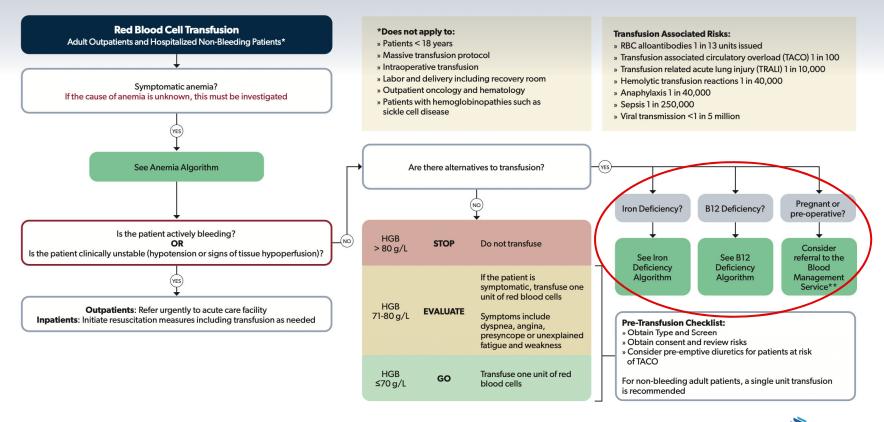
- Adult outpatients
- Hospitalized non-bleeding patients
- Excludes:
 - Actively bleeding/unstable patients
 - Pediatrics, massive transfusion, intraoperative care, labor/delivery including recovery room, outpatient oncology/hematology, hemoglobinopathies

Red Blood Cell Transfusion

Cause of Anemia

- Must be investigated if unknown
 - Dictates appropriate management!
- Basic investigations
 - CBC, blood film, reticulocyte count, ferritin, iron saturation, vitamin B12
- Goal
 - Determine etiology → assess for transfusion alternatives

Transfusion Alternatives



Don't transfuse blood if other nontransfusion therapies or observation would be just as effective.

Red Blood Cell Transfusion

Transfusion Alternatives

- Based on cause of anemia
 - There's an algorithm for that!
- Nutritional deficiency **replace**
 - Iron, B12, erythropoietin
- Pregnancy or pre-op optimize

Transfusion Alternatives – Why?

Avoid potentially unnecessary associated risk

Blood conservation

Transfusion Risks

Adverse Transfusion Event	Risk per unit transfused	
RBC alloantibodies	1 in 13	
TACO	1 in 100	
TRALI	1 in 10,000	
Hemolytic Transfusion Reaction	1 in 40,000	
Anaphylaxis	1 in 40,000	
Sepsis	1 in 250,000	
Viral Transmission	< 1 in 5 million	

Alloimmunization

- 1 in 13 units transfused
- New RBC alloantibodies in 8% of recipients within 6 months of transfusion
- Complications
 - Hemolytic transfusion reactions
 - Hemolytic disease of the fetus and newborn
 - More extensive testing for future transfusion
 - May cause delays!

Hemolytic disease of the fetus and newborn

- Maternal alloantibody crosses placenta and causes hemolysis in fetus/neonate
 - Predominantly RhD but others contribute
 - Preterm delivery 1.4-2.4 RR
 - Stillbirth 1.5-2.6 RR
- Risk of alloantibody formation 个 with transfusion

Women of childbearing age (<45)

- Iron deficiency is prevalent in this population
 - Worldwide 1 in 5 women have iron deficiency anemia
 - In pregnancy 75% of anemia due to iron deficiency
- Utilize alternatives to avoid unnecessary risk!
 - Iron, iron and more iron

Transfusion Alternatives – How?

- Best Blood Manitoba Blood Management Service
- Goals
 - Enhance patient care/satisfaction through blood & blood alternatives education
 - Provide process whereby patients are informed and appropriate alternatives are implemented
 - Decrease demand on blood supply

Transfusion Alternatives – Who?

- Prior to elective surgical procedures associated with
 - High blood loss
 - Staged procedures
- Anemic patients
- Obstetrical patients
- Small patients (low body weight)
- Difficult cross-match or multiple anti-bodies
- Patients who do not accept blood transfusion

		Disord Day 20	
	Winnipeg Regional Health Authority	Office régional de la santé de Winnipeg	В
11/	Carina for Health	À l'écoute de notre santé	MA

Request for Consultation/Referral

Phone: 204-926-8006 Fax: 204-940-3255 Date of Referral: Client Surname Given Name Date of Birth Gender

PHIN

PLEASE ATTACH MOST RECENT CBC, IRON STUDIES (FERRITIN, IRON, TIBC), MEDICAL HISTORY, MEDICATION, & RELEVANT DOCUMENTATION IN ORDER TO EXPEDITE CONSULT

REASON FOR REFERRAL	
☐ Non-consent for transfusion	☐ Staged or multiple surgeries
☐ High blood loss surgery	☐ Low body weight (less than 60 kg)
☐ History of anemia – current Hgb:	☐ Difficult cross-match
Other (specify):	

Non-obstetrical

https://bestbloodmanitoba.ca

	Caring for Health	A l'ecoute de notre sante	
Red	quest for	r Consultation	n/Referral
for	Obstetr	ical Patients	

Phone: 204-926-8006 Fax: 204-940-3255 Date of Referral:

Winnipeg Regional Office régional de la Health Authority santé de Winnipeg

I B A	PO	D	FA	NI-	*

For a consult to be considered by Blood Management Service the patient must have met all of the following criteria.

MRN

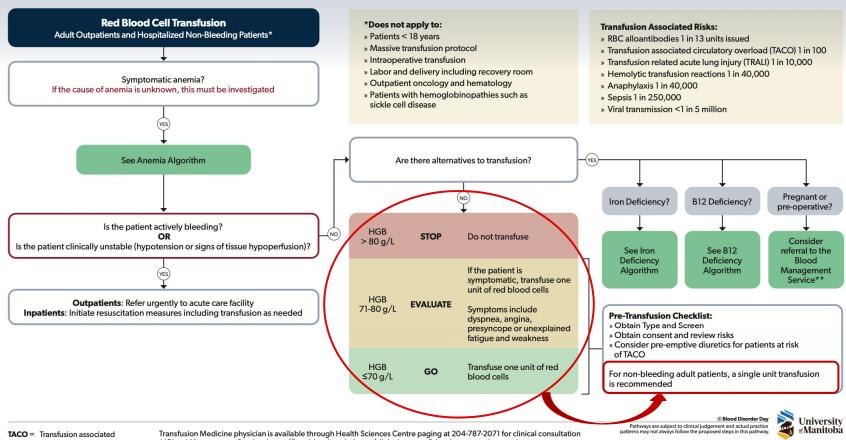
PHIN

Client Surname Given Name Date of Birth Gender

- A serum Hgb below 80 g/L with evidence of iron deficiency anemia A failed trial of oral iron greater than 2 weeks
- At least 13 weeks gestation.

And/or:

- Low body weight (less than 60 kg) pre-pregnancy
 - Increased risk of postpartum hemorrhage including but not limited to: · Placental abnormality Multiple pregnancy
 - Gestational hypertension
- · Multiple previous deliveries Large baby in current pregnancy
 Past History Postpartum Hemorrhage


Obstetrical

- Rare blood type or antibodies
- Non-consent for transfusion

Red Blood Cell Transfusion

Restrictive Transfusion Approach

Don't transfuse more than one red cell unit at a time when transfusion is required in stable, non-bleeding patients.

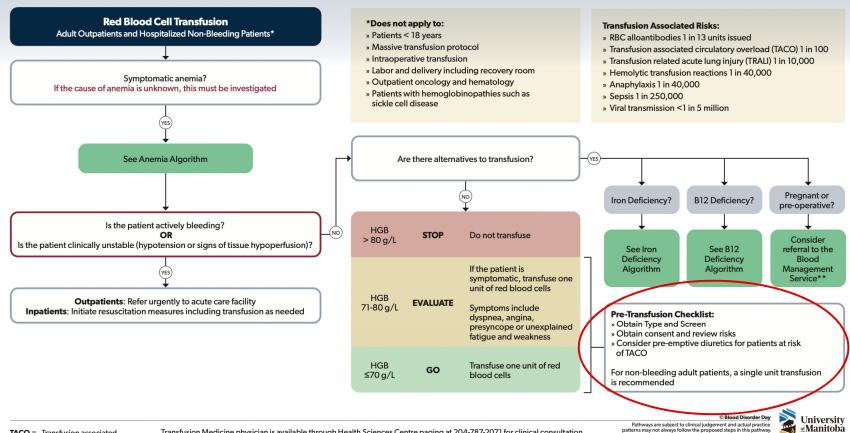
Outcomes	Illustrative comparative risks* (95% CI)		Relative effect (95% CI)	Number of par- ticipants	Quality of the evidence	Com- ments
	Assumed risk	Corresponding risk	(55 % 61)	(studies)	(GRADE)	illelits
	Liberal transfusion (Hb 9 g/dL to 10 g/dL)	Restrictive transfusion (Hb 7 g/dL to 8 g/dL)				
People receiving blood transfusions	841 per 1000	479 per 1000	RR 0.57 (0.49 to 0.65)	12,587 (31)	⊕⊕⊕⊕ High	-
30-day mortality	93 per 1000	90 per 1000	RR 0.97 (0.81 to 1.16)	10,537 (23)	⊕⊕⊕⊝ Moderate ^a	-
Myocardial infarction	17 per 1000	19 per 1000	RR 1.08 (0.74 to 1.60)	8303 (16)	⊕⊕⊕⊕ High	-
Congestive heart failure	36 per 1000	28 per 1000	RR 0.78 (0.45 to 1.35)	6257 (12)	⊕⊕⊝⊝ Low ^{b,c}	-
Cerebrovascular accident (CVA) - stroke	17 per 1000	13 per 1000	RR 0.78 (0.53 to 1.14)	7343 (13)	⊕⊕⊕⊕ High	-
Rebleeding	163 per 1000	144 per 1000	RR 0.75 (0.51 to 1.10)	3108 (6)	⊕⊕⊝⊝ Low ^d , e	.
Pneumonia	82 per 1000	76 per 1000	RR 0.94 (0.80 to 1.11)	6277 (14)	⊕⊕⊕⊕ High	
Thromboembolism	10 per 1000	8 per 1000	RR 0.77 (0.41 to 1.45)	4019 (10)	⊕⊕⊕⊕ High	8

Carson JL et al. Cochrane Database Sys. Rev. 2016

Restrictive Transfusion Approach

- Myocardial infarction
 - Signal 30-day mortality may be influenced by liberal vs restrictive strategy
 - Results not statistically significant
 - RR 3.88, 95% CI 0.83 18.13
 - Small studies

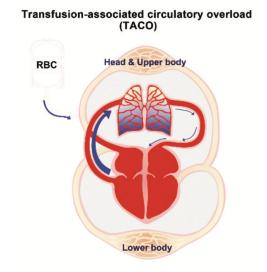
Restrictive Transfusion Approach


- Transfusion → increased morbidity and mortality in highrisk hospitalized inpatients
- Trigger HGB 70-80 g/L as effective as liberal approach
- Single unit for non-bleeding hospitalized patients
- Guide

 symptoms and hemoglobin concentration
 - Dyspnea, angina, presyncope, unexplained fatigue/weakness

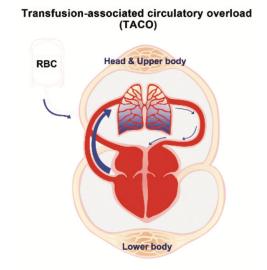
Red Blood Cell Transfusion

Transfusion Risks


Adverse Transfusion Event	Risk per unit transfused	
RBC alloantibodies	1 in 13	
TACO	1 in 100	
TRALI	1 in 10,000	
Hemolytic Transfusion Reaction	1 in 40,000	
Anaphylaxis	1 in 40,000	
Sepsis	1 in 250,000	
Viral Transmission	< 1 in 5 million	

Transfusion Associated Circulatory Overload (TACO)

- Circulatory overload due to:
 - Cardiac dysfunction
 - Rapid rate of transfusion
- Most common cause of death from transfusion



Transfusion Associated Circulatory Overload (TACO)

- Clinical presentation
 - Dyspnea
 - Orthopnea
 - Tachycardia
 - Increase venous pressure/JVP
 - Hypertension

TACO Risk Assessment

- History of:
 - Age greater ≥70 years
 - Renal dysfunction
 - Left ventricular dysfunction
 - Prior or current CHF
 - Severe euvolemic anemia (hemoglobin <50 g/L)
- If YES → Diuretics indicated

Case #1

- 28 yo female, G2P1, PMHx menorrhagia, currently 20 weeks gestation
- Mild fatigue, vitally stable, otherwise well
- Routine bloodwork:

Test	Value	Ref Range
HGB	75 g/L	120-160 g/L
MCV	78 fL	80-98 fL
Ferritin	3 ug/L	20-200 ug/L

Case #1 - Revisited

- 28 yo female, G2P1, PMHx menorrhagia, currently 20 weeks gestation
- Mild fatigue, vitally stable, otherwise well
- Investigations confirm iron deficiency anemia
- Transfusion alternatives are available!

Case #1 - Revisited

- Trial of oral iron x 2 weeks
 - Gl upset, constipation
- Referred to Blood Management Service
- Given IV iron with return of HGB to physiologic level for pregnancy

Case #2 – Revisited

- 80 year old male with history of HTN, CHF
- Prolonged admission following colectomy with primary anastomosis for adenocarcinoma
- Feels weak, too tired to work with physio
- Investigations
 - Normocytic anemia with signs of inflammation
 - Daily phlebotomy since admission

Case #2 - Revisited

Requires transfusion

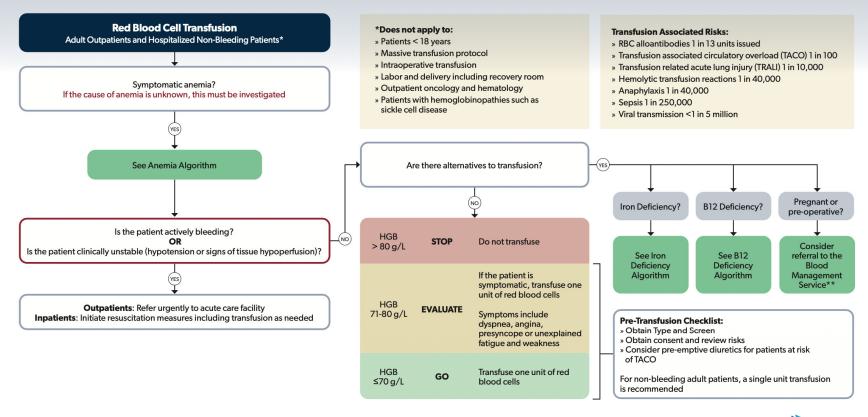
High risk for TACO

TACO Risk Assessment

- History of:
 - Age greater ≥70 years
 - Renal dysfunction
 - Left ventricular dysfunction
 - Prior or current CHF
 - Severe euvolemic anemia (hemoglobin <50 g/L)
- Diuretics are indicated

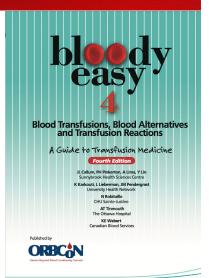
Case #2 – Revisited

- Administered 1 unit of PRBCs with 40 mg of IV furosemide
- Tolerates transfusion well
 - Improved energy and working with physio
- Blood work frequency reduced to twice per week to minimize contribution of phlebotomy


Take home message

- Transfusion is not without risk
 - Alloimmunization
 - TACO
- Transfusion alternatives should be sought if available
- Restrictive transfusion strategy should be employed with symptoms to guide intervention

Red Blood Cell Transfusion



References

- Callum JL, Pinkerton PH et al. Bloody easy 4: blood transfusions, blood alternatives and transfusion reactions: a
 guide to transfusion medicine. 4th ed. Toronto, ON: ORBCON; 2016.
- Szczepiorkowski ZM, Dunbar NM, Transfusion guidelines: when to transfuse. *Hematology Am Soc Hematol Educ Program* 2013; 2013 (1): 638–644. doi: https://doi-org.uml.idm.oclc.org/10.1182/asheducation-2013.1.638
- Carson JL, et al. Red blood cell transfusion: a clinical practice guideline from the AABB*. Ann Intern Med. 2012 Jul 3;157(1):49-58. PMID: 22751760.
- Delaney M, Matthews DC. Hemolytic disease of the fetus and newborn: managing the mother, fetus, and newborn. Hematology Am Soc Hematol Educ Program. 2015;2015:146-151. doi:10.1182/asheducation-2015.1.146
- Kassebaum NJ, Jasrasaria R, Naghavi M, et al. A systematic analysis of global anemia burden from 1990 to 2010. Blood. 2014;123(5):615-624. doi:10.1182/blood-2013-06-508325
- Carson JL, Stanworth SJ, Roubinian N, et al. Transfusion thresholds and other strategies for guiding allogeneic red blood cell transfusion. *Cochrane Database Syst Rev.* 2016;10(10):CD002042. Published 2016 Oct 12. doi:10.1002/14651858.CD002042.pub4
- Hebert PC, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care.
 Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med. 1999
 Feb 11;340(6):409-17. PMID: 9971864.
- British Committee for Standards in Haematology, Blood Transfusion Task Force. Guidelines for the clinical use of red blood cell transfusions. Br J Haematol 2001; 113:24-31.
- Kansagara D, Dyer E, Englander H, et al. Treatment of anemia in patients with heart disease: a systematic review. Ann Intern Med 2013; 159:746-757.
- Wu W-C, Rathore SS, Wang Y, et al. Blood transfusion in elderly patients with acute myocardial infarction. N Engl J Med 2001; 345:1230-1236.

Thank you

umtaplel@myumanitoba.ca aponnampalam@cancercare.mb.ca

