

Blood

Disorders Day 2021

For Health Professionals

Thrombosis and anticoagulation in COVID-19

Ryan Zarychanski, MD, MSc, FRCPC, Hematologist

Associate Professor Departments of Internal Medicine, Pharmacy and Community Health Sciences, Rady Faculty of Health Sciences, University of Manitoba Clinician-Scientist, CancerCare Manitoba, Research Institute of Oncology & Hematology Lyonel G. Israels Research Chair in Hematology, University of Manitoba

Presenter Disclosure

Faculty : Ryan Zarychanski

Relationships with commercial interests:

- Grants/Research Support: No
- Speakers Bureau/Honoraria: No
- Consulting Fees: No
- Patents and Liscencing Fees: No

CancerCare Manitoba ActionCancerManitoba

Mitigating Potential Bias

 I will be making off-label recommendations based on high quality RCT data

Learning Objectives

- 1. Discuss thrombosis risk in COVID-19
- 2. Present evidence-informed strategies to inform upfront anticoagulation strategies
 - Hospitalized non-critically ill (ward-like) patients
 - Critically ill (ICU-like) patients
- 3. Provide treatment recommendations

Clinical case

- 55 yo male admitted to hospital with dyspnea
 - Diagnosed with COVID-19 by PCR
 - 87% on room air. Placed on 10 L NP
 - Treated with dexamethasone, tocilizumab
 - Standard-dose VTE prophylaxis (dalteparin 5000 U S/Q OD)
 - Is there a role for higher-dose anticoagulants to reduce thrombosis and improve clinical outcomes?

Thrombosis and COVID-19

- Thrombosis is a prominent feature
 - 5-30% will develop thrombosis^{1,2}
- Venous and arterial events have been reported
- Microthrombosis may be a key mediator of COVID-19related organ dysfunction, morbidity, and mortality

1. Tang N et al. J Thomb Haemost. 2020;18:844-7 2. Klok FA et al. Thromb Res. 2020;191:145-7

Mechanisms of Thrombosis in COVID-19

- Endothelial injury / tissue factor expression
- Inflammation and immune activation
- ACE-2 down regulation
- NETs/NETosis
- Platelet and macrophage activation
- Complement activation
- Increased fibrinogen; reduced fibrinolysis
- Reduced natural anticoagulants
- ? antiphospholipid antibodies

D-dimer

- Elevated D-dimer is associated with increased mortality and thrombosis
- ISTH recommends measuring D-dimer in hospitalized patients¹
- It is unknown how the D-dimer value should impact clinical decision making – intensity of care or anticoagulation strategies

1. Thachil J et al. J Thromb Haemost. 2020;18:1023-6

Observational data

- Retrospective cohort in New York City (n=2773)
 - Therapeutic anticoagulation associated with increased survival
 - Longer duration of anticoagulation associated with lower mortality in mechanically ventilated patients
 - Major bleeding 3% (therapeutic dose) vs 2% (standard dose)
- Limitations included survivor bias and confounding by indication
- Similar benefits of anticoagulants in other (weak) observational studies

Paranjpe I et al. J am Coll Cardiol 2020;76:122-4

Clinical Question

 In hospitalized patients with confirmed COVID-19, do enhanced anticoagulation doses (therapeutic- or 'intermediate-dose' safely improve clinical outcomes

Multi-platform RCT (mpRCT)

- **ATTACC**: Antithrombotic therapy to ameliorate complications of COVID-19
 - 58 sites in Canada, USA, Brazil, Mexico
- REMAP-CAP: Randomized embedded multi-factorial, adaptive platform trial
 - 290 sites in Canada, USA, UK, Ireland, EU, Saudi Arabia, Australia, New Zealand, Nepal, India, Pakistan
- **ACTIV-4a:** Accelerating COVID-19 therapeutic interventions and vaccines
 - 60 activated sites in USA and Spain

Multiplatform RCT

Design: Randomized, Open-Label, Adaptive Bayesian Trial

Patients: Adults hospitalized patients for COVID-19

- Signs and symptoms consistent with COVID-19
- Randomized within 72 hours of admission
 - 48 hours in REMAP-CAP for severe state (ICU) patients

Exclusion Criteria

ATTACC	ACTIV-4a/PROTECT	REMAP-CAP
 Active bleeding Risk factors for bleeding Indication for therapeutic anticoagulation Platelet count <50 x109/L, INR >2.0, or baseline aPTT >50 (if available per SOC testing) Hemoglobin <80 g/L Bacterial endocarditis History of HIT Dual anti-platelet therapy Imminent demise anticipated Enrollment in other trials related to anticoagulation 	 Contraindication to anticoagulation Indication for therapeutic anticoagulation in the case that it cannot be stopped Platelet count < 50x 10⁹/L Hemoglobin < 8 g/dL Pregnancy Patient on dual anti-platelet therapy, when the P2Y12 agent cannot be stopped safely 	 Contraindication to therapeutic anticoagulation Requirement for therapeutic anticoagulation Dual anti-platelet therapy Enrolment in another anticoagulation trial Known or suspected previous adverse reaction to UFH or LMWH Treating clinician believes that participation in the domain would not be in the best interests of the patient

Multiplatform RCT

Intervention:

- Therapeutic low molecular weight heparin (LMWH) or unfractionated heparin (UFH)
- therapeutic-dose as per hospital policy for treatment of venous thrombotic events (VTE)

Control:

- Usual care pharmacologic VTE prophylaxis
 - Usual care defined according to hospital policy or prescriber practice

Duration of therapy:

• 14 days or hospital discharge (or liberation from supplemental oxygen; ATTACC), whichever occurred first

mpRCT – Primary Outcome

Primary outcome: Organ support-free days (OSFDs to day 21)

- Ordinal scale combination of in-hospital mortality and organ support-free days
 - Days free of organ support through 21 days for survivors (0,1,2, ..., 21); Mortality assigned a value of -1 (worst score).
- A composite measuring clinically relevant morbidity and mortality. ie. Burden of disease at a patient and systems level

*Organ support = ICU level of care and receipt of mechanical ventilation, vasopressors, ECMO or high flow nasal oxygen

mpRCT – Secondary outcomes

Key Secondary outcomes:

- <u>Safety</u>: Major hemorrhage (ISTH criteria) and HIT
- <u>Efficacy</u>: Mortality, intubation, major thrombosis, PE, VTE, stroke, MI, length of stay in ICU and hospital

mpRCT – Analysis population

- Main analysis population was stratified by:
 - <u>Critically ill</u> patients (receiving ICU-level organ support)
 - <u>Moderately</u> ill patients (hospitalized but not initially requiring ICU therapies/level of care)
 - Moderately ill patients further stratified according baseline D-dimer:
 - − High D-dimer (baseline D-dimer \ge 2x local upper limit of normal)
 - Low D-dimer (baseline D-dimer <2x local upper limit of normal)
 - Unknown (baseline D-dimer unknown)

ATTACC, REMAP-CAP, and ACTIV-4a mpRCT

	ATTACC	ACTIV-4a/PROTECT	REMAP-CAP		
Platform/Domain leads	Ryan Zarychanski, Patrick Lawler, Ewan Goligher	Judy Hochman, Matthew Neal, Jeff Berger	Ryan Zarychanski, Ewan Goligher (Domain leads)		
Primary funders	CIHR, LifeArc, Thistledown NIH/NHLBI Foundation, Research Manitoba, Peter Munk Cardiac Centre, Ontario Together, CCMBF, VGH Foundation.		NIHR (UK), NHMRC (AUS), PREPARE/RECOVER (EU), CIHR (CDN), UPMC (USA), HRC (NZ), Minderoo Foundation		
Countries	4	2	11		
Sites	58	~60 activated of 190	290		
Data Management Center	Socar (Switzerland)	Socar (Switzerland)	Spiral (Australia), UPMC (USA)		
Platform Coordinating Center	Ozmosis Research / University of Manitoba	University of Pittsburgh and NYU	Monash University		
Statistical Committee	Berry Consultants (Texas, USA)				

Primary Outcome

State & D-dimer Strata	Proportional Odds Ratio Median (95% Crl)	Trial Statistical Conclusion
ALL MODERATE	1.29 (1.04 – 1.61)	Superiority [Probability of OR>1 = 99%]
Moderate state, low D-dimer	1.22 (0.93 – 1.57)	Superiority [Probability of OR>1 = 93%]
Moderate state, high D-dimer	1.31 (1.00 – 1.76)	Superiority [Probability of OR>1 = 97%]
Moderate state, missing D- dimer	1.32 (1.00 – 1.86)	n/a [™]
SEVERE	0.83 (0.67 – 1.03)	Inferiority[Probability of OR<1 = 95%]

In hospital survival

State & D-dimer Strata	Proportional Odds Ratio Median (95% Crl)	Trial Statistical Conclusion
ALL MODERATE	1.20 (0.86 – 1.63)	Superiority [Probability of OR>1 = 84%]
Moderate state, low D-dimer	1.21 (0.81 – 1.74)	Superiority [Probability of OR>1 = 82%]
Moderate state, high D-dimer	1.16 (0.79 – 1.71)	Superiority [Probability of OR>1 = 79%]
Moderate state, missing D- dimer	1.20 (0.81 – 1.83)	n/a [™]
SEVERE	0.85 (0.64 – 1.10)	Inferiority[Probability of OR<1 = 89%]

Primary outcome:

Non-critically ill patients (not on organ support at baseline)

CancerCareManitoba ActionCancerManitoba

Primary outcome:

Critically ill patients (not on organ support at baseline)

Primary outcome:

Non-critically ill patients (not on organ support at baseline)

Primary outcome:

Non-critically ill patients (not on organ support at baseline)

MC Company	Subaroun	# Dotiont	-		_	Odds Ratio	Pr(Superior)	Samp	le size
	Subgroup	# Falleni	.5	1 1.	29	Median (95% Crl)	PTP	TAC
	Overall	2219		- i	-	1.29 (1.04, 1.61)	99.0	1048	1171
	Age			1					
	<50	541	_			1.14 (0.69, 1.88)	69.4	255	286
	50-70	1216				1.29 (0.98, 1.72)	96.4	578	638
	>70	462		<u>+</u>	■	1.36 (0.92, 2.01)	93.6	215	247
	Sex								
	Male	1302		- i	-	1.46 (1.13, 1.91)	99.8	595	707
	Female	917	-	-		1.01 (0.71, 1.45)	52.4	453	464
	Baseline Respira	tory Suppo	ort						
	None	276		_	=	→ 1.39 (0.70, 2.79)	82.6	123	153
	Supplemental	O2 1477		-	—	1.27 (0.99, 1.64)	96.9	694	783
	HFNO	53	د.		_	0.54 (0.20, 1.43)	10.2	28	25
	Ventilated	45	۲	_	-		70.9	24	21
	Unspecified	368	S 			- 1.33 (0.72, 2.49)	81.6	179	189
	Baseline Antiplat	elet							
	No antiplatelet	1958		- <u>-</u>	—	1.25 (0.99, 1.57)	96.6	935	1023
	Antiplatelet	256			=	- 1.40 (0.79, 2.41)	87.5	111	145
	PTP Classificatio	n							
	Intermediate-o	dose 897			■	1.39 (0.97, 2.00)	96.6	450	447
	Low-dose	465				1.30 (0.80, 2.09)	85.4	177	288
			0.5	1	1.5 2	2.5			
				_					
			PTP better	rj	TAC be	etter			

Adjusted absolute reduction of death/organ support = 4.5%

Non-critically ill patients (not on organ support at baseline)

CancerCare Manitoba ActionCancerManitoba

Major thrombotic events and death

	Moder (not on organ sup	ately ill pport at baseline)	Critically ill patients (Organ support at baseline)		
	Therapeutic anticoagulation	Usual Care venous thromboprophylaxis	Therapeutic anticoagulation	Usual Care venous thromboprophylaxis	
Major thrombotic events*	8.6%	10.2%	40.1%	41.1%	

*Defined as Pulmonary Embolism, Myocardial infarction, Ischemic Stroke, systemic arterial embolism

CancerCare Manitoba ActionCancerManitoba

Summary – non critically ill patients

- Therapeutic dose heparin improves:
 - Survival to hospital discharge without need for organ support
 - Survival without intubation
 - Survival without thrombosis
 - Survival to hospital discharge

Conclusion

- In Moderately ill patients: Hospitalized, not on ICU Organ-Support
 - Therapeutic-dose anticoagulation increases the probability of survival to hospital discharge with reduced need for ICU level organ support
 - 14 days or until hospital discharge or liberation from supplemental O2
 - Positive effect across morbidity and mortality components of primary endpoint
 - Major bleeding rate <2% on therapeutic anticoagulation
 - Absolute benefit is higher in patients with elevated d-dimer and increased comorbidities

Conclusion

- In Critically ill patients: Hospitalized, on ICU Organ-Support
 - Therapeutic heparin does not improve survival or result in improvements in organ free support
 - Probability that therapeutic heparin is inferior (harmful) compared to thromboprophylaxis is **high**

Clinical case revisited

- 55 yo male admitted to hospital with dyspnea
 - Diagnosed with COVID-19 by PCR
 - 87% on room air. Placed on 10 L NP
 - Treated with dexamethasone, tocilizumab
 - Standard-dose VTE prophylaxis (dalteparin 5000 U S/Q OD)
 - Is there a role for higher-dose anticoagulants to reduce thrombosis and improve clinical outcomes?

Yes – Consider therapeutic anticoagulation with heparin

- If: no contraindications to heparinization
- For: up to 14 days or until hospital discharge or liberation from supplemental O2
- With: low molecular weight heparin or unfractionated heparin

Transition from ward to ICU (moderate to severe)

- Given divergent how should we manage therapeutic anticoagulation (TAC) for moderatelyill patients who become critically ill?
 - The trial protocol specified TAC to continue when patients became critically ill
 - This protocol arm was overall superior to usual care
 - It is Unknown whether TAC would have had greater overall benefit in moderate state if it had been discontinued in patients who became critically ill
 - Research ongoing to answer this question

CancerCare Manitoba ActionCancerManitoba

Unanswered questions

- Do these data apply to patients at home or in LTC facilities on oxygen? Perhaps
- Can DOACs be used instead of LMWH/UFH? Perhaps not
- Should patients receive extended duration anticoagulation post discharge? Not sure
- What about 'intermediate dose? To be determined

Thank you

Ryan Zarychanski MD MSc rzarychanski@cancercare.mb.ca y @RZarychanski

Research

Manitoba